Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(2): 165-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189630

RESUMO

The Tour Divide (TD) is a 4385 km ultra-endurance bicycle race that follows the continental divide from Canada to Mexico. In this case study, we performed a comprehensive molecular and physiological profile before and after the completion of the TD. Assessments were performed 35 days before the start (Pre-TD) and ∼36 h after the finish (Post-TD). Total energy expenditure was assessed during the first 9 days by doubly labelled water (2 H2 18 O), abdominal and leg tissue volumes via MRI, and graded exercise tests to quantify fitness and substrate preference. Vastus lateralis muscle biopsies were taken to measure mitochondrial function via respirometry, and vascular function was assessed using Doppler ultrasound. The 47-year-old male subject took 16 days 7 h 45 min to complete the route. He rode an average of 16.8 h/day. Neither maximal O2 uptake nor maximal power output changed pre- to post-TD. Measurement of total energy expenditure and dietary recall records suggested maintenance of energy balance, which was supported by the lack of change in body weight. The subject lost both appendicular and trunk fat mass and gained leg lean mass pre- to post-TD. Skeletal muscle mitochondrial and vascular endothelial function decreased pre- to post-TD. Overall, exercise performance was maintained despite reductions in muscle mitochondrial and vascular endothelial function post-TD, suggesting a metabolic reserve in our highly trained athlete.


Assuntos
Ciclismo , Resistência Física , Masculino , Humanos , Pessoa de Meia-Idade , Resistência Física/fisiologia , Exercício Físico/fisiologia , Metabolismo Energético , Músculo Esquelético/fisiologia
2.
Scand J Med Sci Sports ; 33(12): 2548-2560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642310

RESUMO

The present study compared the ipsilateral repeated bout effect (IL-RBE) and contralateral repeated bout effect (CL-RBE) of the elbow flexors (EF) and knee flexors (KF) for the same interval between bouts to shed light on their mechanisms. Fifty-two healthy sedentary young (20-28 years) men were randomly assigned to the IL-EF, IL-KF, CL-EF, and CL-KF groups (n = 13/group). Thirty maximal eccentric contractions of the EF were performed in IL-EF and CL-EF, and 60 maximal eccentric contractions of the KF were performed in IL-KF and CL-KF, with a 2-week interval between bouts. Changes in muscle damage markers such as maximal voluntary contraction (MVC) torque, muscle soreness, and plasma creatine kinase activity, and proprioception measures before to 5 days post-exercise were compared between groups. Changes in all variables were greater (p < 0.05) after the first than second bout for all groups, and the changes were greater (p < 0.05) for the EF than KF. The changes in all variables after the second bout were greater (p < 0.05) for the CL than IL condition for both EF and KF. The magnitude of the average protective effect was similar between CL-EF (33%) and CL-KF (32%), but slightly greater (p < 0.05) for IL-EF (67%) than IL-KF (61%). These demonstrate that the magnitude of CL-RBE relative to IL-RBE was similar between the EF and KF (approximately 50%), regardless of the greater muscle damage for the EF than KF. It appears that the CL-RBE is more associated with neural adaptations at cerebrum, cerebellum, interhemispheric inhibition, and coricospinal tract, but the IL-RBE is induced by additional adaptations at muscles.


Assuntos
Cotovelo , Músculo Esquelético , Humanos , Masculino , Creatina Quinase , Cotovelo/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Mialgia/prevenção & controle , Adulto Jovem , Adulto
3.
J Strength Cond Res ; 34(4): 1123-1132, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30399118

RESUMO

Magoffin, RD, Parcell, AC, Hyldahl, RD, Fellingham, GW, Hopkins, JT, and Feland, JB. Whole-body vibration as a warm-up before exercise-induced muscle damage on symptoms of delayed-onset muscle soreness in trained subjects. J Strength Cond Res 34(4): 1123-1132, 2020-There is no clear scientific evidence that whole-body vibration (WBV) used as a warm-up before performing eccentric exercise mitigates delayed-onset muscle soreness (DOMS) and speeds strength loss recovery. These benefits were observed primarily in nonresistance-trained individuals. The aim of this study was to determine whether WBV could mitigate soreness and expedite strength recovery for resistance-trained individuals when used as a warm-up before eccentric exercise. Thirty resistance-trained males completed 300 maximal eccentric contractions of the quadriceps after warming up with (WBV) or without (CON) WBV. Both CON and WBV experienced significant isometric (26.3 and 30.2%, respectively) and dynamic (50.9 and 46.4%, respectively) strength loss immediately after exercise. Isometric strength was significantly depressed after 24 hours in the CON group (8.2% p < 0.02), but not in the WBV group (5.9% p = 0.7). Isometric strength was no longer significantly depressed after 48 hours in the CON group (6.1% p < 0.07) or the WBV group (4.1% p = 0.20). Dynamic strength was significantly decreased in both the CON and WBV groups at 24 hours (17.7% p < 0.001 and 15.5% p < 0.001, respectively) and 48 hours (17.1% p < 0.01 and 13.6% p < 0.002), but only significant for the CON at 1 week after exercise (8.6% p = 0.05). Pain as measured by a visual analog scale was significant in both groups at 24 and 48 hours after exercise, but WBV experienced significantly less soreness than the CON group after 24 hours (28 vs. 46 mm p < 0.01, respectively) and 48 hours (38 vs. 50 mm p < 0.01). Pain pressure threshold increased significantly in both groups, but there was no difference between groups. These results suggest the use of WBV before eccentric exercise mildly mitigates DOMS in trained individuals. Application of WBV can function as a quick mode of warm-up before resistance training and can decrease pain perception from DOMS. This may be beneficial to athletes undergoing a heavy strength training phase where DOMS is likely.


Assuntos
Mialgia/prevenção & controle , Treinamento de Força/métodos , Vibração , Exercício de Aquecimento/fisiologia , Adolescente , Adulto , Atletas , Feminino , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Limiar da Dor , Modalidades de Fisioterapia , Músculo Quadríceps/fisiologia , Fatores de Tempo , Adulto Jovem
4.
FASEB J ; 33(9): 10353-10368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208207

RESUMO

The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.


Assuntos
Envelhecimento/patologia , Exercício Físico/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/patologia , Músculo Esquelético/fisiopatologia , Mioblastos/patologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Músculo Esquelético/lesões , Fenótipo , Adulto Jovem
5.
PLoS One ; 13(6): e0198611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897957

RESUMO

BACKGROUND: Recent studies have highlighted the JAK/STAT signaling pathway in the regulation of muscle satellite cell behavior. Herein we report preclinical studies designed to characterize the effects of a novel JAK/STAT inhibitor on plantar flexor skeletal muscle function, morphology, and satellite cell content. METHODS: The compound, SGI-1252, was administered orally (400mg/kg) in a 10% dextrose solution to wild type mice (n = 6) 3 times per week for 8 weeks. A control group (n = 6) received only the dextrose solution. RESULTS: SGI-1252 was well tolerated, as animals displayed similar weight gain over the 8-week treatment period. Following treatment, fatigue in the gastrocnemius-soleus-plantaris complex was greater in the SGI-1252 mice during a 300 second tetanic contraction bout (p = 0.035), though both the rate of fatigue and maximal force production were similar. SGI-1252 treated mice had increased type II myofiber cross-sectional area (1434.8 ± 225.4 vs 1754.7 ± 138.5 µm2), along with an increase in wet muscle mass (125.45 ± 5.46 vs 139.6 ± 12.34 mg, p = 0.032) of the gastrocnemius relative to vehicle treated mice. SGI-1252 treatment reduced gastrocnemius STAT3 phosphorylation 53% (94.79 ± 45.9 vs 44.5 ± 6.1 MFI) and significantly increased the concentration of Pax7+ satellite cells (2589.2 ± 105.5 vs 2859.4 ± 177.5 SC/mm3) in the gastrocnemius. SGI-1252 treatment suppressed MyoD (p = 0.013) and Myogenin (p<0.0001) expression in human primary myoblasts, resulting in reduced myogenic differentiation (p = 0.039). CONCLUSIONS: Orally delivered SGI-1252 was well tolerated, attenuates skeletal muscle STAT3 activity, and increases satellite cell content in mouse gastrocnemius muscle, likely by inhibiting myogenic progression.


Assuntos
Diaminas/farmacologia , Janus Quinases/metabolismo , Músculo Esquelético/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Fatores de Transcrição STAT/metabolismo , Administração Oral , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Humanos , Janus Quinases/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/metabolismo , Fator de Transcrição PAX7/metabolismo , Fosforilação/efeitos dos fármacos , Fatores de Transcrição STAT/antagonistas & inibidores , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
6.
Gait Posture ; 44: 131-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27004646

RESUMO

Because serum cartilage oligomeric matrix protein (COMP) has been used to reflect articular cartilage condition, we aimed to identify walking and running mechanics that are associated with changes in serum COMP. Eighteen subjects (9 male, 9 female; age=23 ± 2 yrs.; mass=68.3 ± 9.6 kg; height=1.70 ± 0.08 m) completed 4000 steps on an instrumented treadmill on three separate days. Each day corresponded to a different ambulation speed: slow (preferred walking speed), medium (+50% of slow), and fast (+100% of slow). Synchronized ground reaction force and video data were collected to evaluate walking mechanics. Blood samples were collected pre-, post-, 30-minute post-, and 60-minute post-ambulation to determine serum COMP concentration at these times. Serum COMP increased 29%, 18%, and 5% immediately post ambulation for the fast, medium, and slow sessions (p<0.01). When the speeds were pooled, peak ankle inversion, knee extension, knee abduction, hip flexion, hip extension, and hip abduction moment, and knee flexion angle at impact explained 61.4% of total variance in COMP concentration change (p<0.001). These results indicate that (1) certain joint mechanics are associated with acute change in serum COMP due to ambulation, and (2) increased ambulation speed increases serum COMP concentration.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/sangue , Caminhada/fisiologia , Feminino , Humanos , Articulações/fisiologia , Extremidade Inferior/fisiologia , Masculino , Adulto Jovem
7.
FASEB J ; 29(7): 2894-904, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808538

RESUMO

This study determined the contribution of extracellular matrix (ECM) remodeling to the protective adaptation of human skeletal muscle known as the repeated-bout effect (RBE). Muscle biopsies were obtained 3 hours, 2 days, and 27 days following an initial bout (B1) of lengthening contractions (LCs) and 2 days following a repeated bout (B2) in 2 separate studies. Biopsies from the nonexercised legs served as controls. In the first study, global transcriptomic analysis indicated widespread changes in ECM structural, deadhesive, and signaling transcripts, 3 hours following LC. To determine if ECM remodeling is involved in the RBE, we conducted a second study by use of a repeated-bout paradigm. TNC immunoreactivity increased 10.8-fold following B1, was attenuated following B2, and positively correlated with LC-induced strength loss (r(2) = 0.45; P = 0.009). Expression of collagen I, III, and IV (COL1A1, COL3A1, COL4A1) transcripts was unchanged early but increased 5.7 ± 2.5-, 3.2 ± 0.9-, and 2.1 ± 0.4-fold (P < 0.05), respectively, 27 days post-B1 and were unaffected by B2. Likewise, TGF-ß signaling demonstrated a delayed response following LC. Satellite cell content increased 80% (P < 0.05) 2 days post-B1 (P < 0.05), remained elevated 27 days post-B1, and was unaffected by B2. Collectively, the data suggest sequential ECM remodeling characterized by early deadhesion and delayed reconstructive activity that appear to contribute to the RBE.


Assuntos
Adaptação Fisiológica , Matriz Extracelular/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adaptação Fisiológica/genética , Adulto , Colágeno/genética , Matriz Extracelular/genética , Feminino , Expressão Gênica , Humanos , Laminina/genética , Masculino , Contração Muscular/genética , Músculo Esquelético/anatomia & histologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Tenascina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
8.
Front Physiol ; 6: 424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793125

RESUMO

Skeletal muscle responds to exercise-induced damage by orchestrating an adaptive process that protects the muscle from damage by subsequent bouts of exercise, a phenomenon called the repeated bout effect (RBE). The mechanisms underlying the RBE are not understood. We hypothesized that an attenuated inflammation response following a repeated bout of lengthening contractions (LC) would be coincidental with a RBE, suggesting a potential relationship. Fourteen men (n = 7) and women (n = 7) completed two bouts of lengthening contractions (LC) separated by 28 days. Muscle biopsies were taken before the first bout (B1) from the non-exercised leg, and from the exercised leg 2- and 27-d post-B1 and 2-d following the second bout (B2). A 29-plex cytokine array identified alterations in inflammatory cytokines. Immunohistochemistry quantified inflammatory cell infiltration and major histocompatibility complex class 1 (MHC-1). Muscle soreness was attenuated in the days following B2 relative to B1, indicating a RBE. Intramuscular monocyte chemoattractant protein (MCP1) and interferon gamma-induced protein 10 (IP10) increased following B2 relative to the pre-exercise sample (7-52 and 11-36 pg/ml, respectively p < 0.05). Interleukin 4 (IL4) decreased (26-13 pg/ml, p < 0.05) following B2 relative to the pre-exercise sample. Infiltration of CD68(+) macrophages and CD8(+) T-cells were evident following B2, but not B1. Moreover, CD8(+) T-cells were observed infiltrating apparently necrotic muscle fibers. No changes in MHC-1 were found. We conclude that inflammation is not attenuated following a repeated bout of LC and that CD8(+) T-cells may play a role in muscle adaptation following LC. Moreover, it appears that the muscle or the immune system becomes sensitized to an initial bout of damaging exercise such that inflammatory cell infiltration into the muscle is enhanced upon a repeated bout of damaging exercise.

9.
Front Physiol ; 5: 485, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566087

RESUMO

Optimal repair and adaptation of skeletal muscle is facilitated by resident stem cells (satellite cells). To understand how different exercise modes influence satellite cell dynamics, we measured satellite cell activity in conjunction with markers of muscle damage and inflammation in human skeletal muscle following a single work- and intensity-matched bout of eccentric (ECC) or concentric contractions (CON). Participants completed a single bout of ECC (n = 7) or CON (n = 7) of the knee extensors. A muscle biopsy was obtained before and 24 h after exercise. Functional measures and immunohistochemical analyses were used to determine the extent of muscle damage and indices of satellite cell activity. Cytokine concentrations were measured using a multiplexed magnetic bead assay. Isokinetic peak torque decreased following ECC (p < 0.05) but not CON. Greater histological staining of the damage marker Xin was observed in muscle samples of ECC vs. CON. Tenasin C immunoreactivity increased 15 fold (p < 0.01) following ECC and was unchanged following CON. The inflammatory cytokines interferon gamma-induced protein 10 (IP-10) and monocyte chemotactic protein 1 (MCP-1) increased pre- to post-ECC (4.26 ± 1.4 vs. 10.49 ± 5.8 pg/ml, and 3.06 ± 0.7 vs. 6.25 ± 4.6 pg/ml, respectively; p < 0.05). There was no change in any cytokine post-CON. Satellite cell content increased 27% pre- to post-ECC (0.10 ± 0.031 vs. 0.127 ± 0.041, respectively; p < 0.05). There was no change in satellite cell number in CON (0.099 ± 0.027 vs. 0.102 ± 0.029, respectively). There was no fiber type-specific satellite cell response following either exercise mode. ECC but not CON resulted in an increase in MyoD positive nuclei per myofiber pre- to post-exercise (p < 0.05), but there was no change in MyoD DNA binding activity in either condition. In conclusion, ECC but not CON results in functional and histological evidence of muscle damage that is accompanied by increased satellite cell activity 24 h post-exercise.

10.
J Sport Rehabil ; 21(3): 225-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894975

RESUMO

CONTEXT: It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. OBJECTIVE: To investigate a pain model for the anterior knee and examine cryo in reducing the pain. DESIGN: Controlled laboratory study. SETTING: Therapeutic modality laboratory. PARTICIPANTS: 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. MAIN OUTCOME MEASURES: Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. RESULTS: There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. CONCLUSION: Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.


Assuntos
Artralgia/terapia , Crioterapia/métodos , Manejo da Dor/métodos , Adulto , Artralgia/induzido quimicamente , Humanos , Articulação do Joelho , Masculino , Medição da Dor , Solução Salina Hipertônica , Adulto Jovem
11.
J Appl Physiol (1985) ; 108(6): 1775-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20360428

RESUMO

Liver kinase B1 (LKB1) is a tumor-suppressing protein that is involved in the regulation of muscle metabolism and growth by phosphorylating and activating AMP-activated protein kinase (AMPK) family members. Here we report the development of a myopathic phenotype in skeletal and cardiac muscle-specific LKB1 knockout (mLKB1-KO) mice. The myopathic phenotype becomes overtly apparent at 30-50 wk of age and is characterized by decreased body weight and a proportional reduction in fast-twitch skeletal muscle weight. The ability to ambulate is compromised with an often complete loss of hindlimb function. Skeletal muscle atrophy is associated with a 50-75% reduction in mammalian target of rapamycin pathway phosphorylation, as well as lower peroxisome proliferator-activated receptor-alpha coactivator-1 content and cAMP response element binding protein phosphorylation (43 and 40% lower in mLKB1-KO mice, respectively). Maximum in situ specific force production is not affected, but fatigue is exaggerated, and relaxation kinetics are slowed in the myopathic mice. The increased fatigue is associated with a 30-78% decrease in mitochondrial protein content, a shift away from type IIA/D toward type IIB muscle fibers, and a tendency (P=0.07) for decreased capillarity in mLKB1-KO muscles. Hearts from myopathic mLKB1-KO mice exhibit grossly dilated atria, suggesting cardiac insufficiency and heart failure, which likely contributes to the phenotype. These findings indicate that LKB1 plays a critical role in the maintenance of both skeletal and cardiac function.


Assuntos
Fadiga Muscular , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
12.
Eur J Appl Physiol ; 108(4): 771-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20187282

RESUMO

This study examined the impact of resistance exercise volume on myoD and myogenin in rodent quadriceps muscle. Six-month-old male Sprague-Dawley rats (316 +/- 2 g) performed either low-volume (LV; 10 sets x 10 contractions) or high-volume (HV; 20 sets x 10 contractions) resistance exercise at 75% one-repetition maximum. Muscles were analyzed for myogenin and myoD mRNA and protein expression 6, 12, 24 and 48 h post-exercise. In red quadriceps (RQ), myogenin mRNA was significantly elevated at 6 h following LV and this response was greater than HV at 6 h, while myogenin protein was significantly increased at 6 and 12 h following LV but only at 12 h following HV (P < 0.05). MyoD mRNA was increased at 6 and 12 h following LV and at 12 h following HV, while myoD protein was slightly decreased (LV; P < 0.05) or unchanged over time (HV). No changes were detected within the white quadriceps muscle. We conclude that acute resistance exercise can activate myogenin and myoD expression levels in RQ, but when exercise volume is doubled these myogenic responses are not proportional but delayed and blunted possibly because of excessive damage/injury. Further work is needed to determine the consequences of these specific myogenic responses on muscle hypertrophy following high-volume resistance exercise training.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores de Regulação Miogênica/genética , Condicionamento Físico Animal/métodos , Treinamento de Força , Animais , Masculino , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Tempo , Suporte de Carga/fisiologia
13.
J Sports Sci Med ; 9(1): 147-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-24149399

RESUMO

Various shoes are worn by distance runners throughout a training season. This study measured the differences in ground reaction forces between running shoes, racing flats, and distance spikes in order to provide information about the potential effects of footwear on injury risk in highly competitive runners. Ten male and ten female intercollegiate distance runners ran across a force plate at 6.7 m·s(-1) (for males) and 5.7 m·s(-1) (for females) in each of the three types of shoes. To control for differences in foot strike, only subjects who exhibited a heel strike were included in the data analysis. Two repeated-measures ANOVAs with Tukey's post-hoc tests (p < 0.05) were used to detect differences in shoe types among males and females. For the males, loading rate, peak vertical impact force and peak braking forces were significantly greater in flats and spikes compared to running shoes. Vertical stiffness in spikes was also significantly greater than in running shoes. Females had significantly shorter stance times and greater maximum propulsion forces in racing flats compared to running shoes. Changing footwear between the shoes used in this study alters the loads placed on the body. Care should be taken as athletes enter different phases of training where different footwear is required. Injury risk may be increased since the body may not be accustomed to the differences in force, stance time, and vertical stiffness. Key pointsTo determine the differences in ground reaction forces between regular running shoes and competitive footwear, force plate data was obtained from 10 males (6.7 m·s(-1)) and 10 females (5.7 m·s(-1)) for each of three shoe types.Data from men and women were analyzed in two separate groups, and significant differences were found for various GRF components between the three types of shoes.The significant increases in GRF components in competitive footwear suggest that the body must deal with greater impact forces in these shoes than in running shoes at the same running speed.The results from this study warrant the recommendation that runners transition gradually from periods when most or all of their training is done in running shoes to more competitive seasons when more of their training is done in racing flats and spikes.

14.
J Appl Physiol (1985) ; 107(3): 749-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19608925

RESUMO

In humans, exercise-induced plasma volume (PV) expansion is typically associated with an increase in plasma albumin content, due in part to an increase in hepatic albumin synthesis. We tested the ability of a 12-day high-intensity intermittent exercise protocol to induce an increase in PV in rodents. Since albumin synthesis is transcriptionally regulated, we tested the hypothesis that exercise training would induce an increase in hepatic albumin gene expression. Fifty adult male Sprague-Dawley rats weighing between 245 and 350 g were randomly assigned to one of five groups: cage control (CC), sham exercise (sham), continuous moderate-intensity exercise training (MI), high-intensity intermittent exercise training (HI), or a single day of HI training (1-HI). Twenty-four hours after the last training session, rats were anesthetized. PV was determined, and the liver was removed, flash frozen, and stored for later analysis. Citrate synthase (CS) activity of the red quadriceps muscle, a marker of aerobic adaptation, increased with training (MI and HI) and in response to 1-HI (P < 0.05). We did not see a significant exercise-induced PV expansion as PV averaged 23.6 +/- 2.7 ml/kg body wt in the CC group and 26.6 +/- 1.3 ml/kg body wt in the HI group (P > 0.05). However, hepatic albumin mRNA expression, as determined by real-time PCR, increased 2.9 +/- 0.4- and 4.1 +/- 0.4-fold after MI and HI, respectively, compared with CC. A single bout of HI (1-HI) did not alter hepatic albumin mRNA expression. These data demonstrate an increase in both CS activity and hepatic albumin gene expression with 12 days of aerobic exercise training in the rodent with a rapid (within 24 h) adaptation in the skeletal muscle to high-intensity intermittent exercise.


Assuntos
Adaptação Fisiológica/fisiologia , Condicionamento Físico Animal/fisiologia , Aerobiose , Albuminas/biossíntese , Albuminas/genética , Limiar Anaeróbio/fisiologia , Animais , Citrato (si)-Sintase/metabolismo , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hematócrito , Fígado/metabolismo , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiologia , Volume Plasmático/fisiologia , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Strength Cond Res ; 23(2): 359-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19209072

RESUMO

The muscle cytoskeleton is necessary for the effective transmission of forces generated by actin-myosin interactions. We have examined the impact of muscle force and exercise volume on the cytoskeleton by measuring desmin and dystrophin content in human skeletal muscle after 12 weeks of progressive resistance or endurance cycle training. Muscle biopsies of the vastus lateralis were obtained before and after training. Desmin and dystrophin content was determined using immunoblotting techniques. After resistance training, desmin content increased 82 +/- 18% (p < 0.05), whereas there was no change in desmin content with endurance cycling. Dystrophin content did not change in either group. One-repetition maximum and VO2max increased (p < 0.05) in the resistance and endurance groups, respectively. These data demonstrate that a high-tension stimulus impacts the cytoskeleton in contrast to high-volume concentric contractions. The tensile loading and eccentric components of resistance training are implicated in desmin alterations. Indeed, the functional improvements resulting from resistance training may be related in part to the mechanical integration provided by the desmin protein.


Assuntos
Ciclismo/fisiologia , Desmina/metabolismo , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Resistência Física , Treinamento de Força , Adulto , Humanos , Masculino , Adulto Jovem
16.
J Strength Cond Res ; 20(4): 799-803, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17194248

RESUMO

Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.


Assuntos
Basquetebol/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Maleabilidade
17.
J Appl Physiol (1985) ; 100(6): 1876-82, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16439510

RESUMO

We have investigated the adaptations of the cytoskeletal proteins desmin and dystrophin in relationship to known muscular adaptations of resistance exercise. We measured desmin, dystrophin, and actin protein contents, myosin heavy chain (MHC) isoform distribution, muscle strength, and muscle cross-sectional area (CSA) during 8 wk of progressive resistance training or after a single bout of unaccustomed resistance exercise. Muscle biopsies were taken from the vastus lateralis of 12 untrained men. For the single-bout group (n=6) biopsies were taken 1 wk before the single bout of exercise (week 0) and 1, 2, 4, and 8 wk after this single bout of exercise. For the training group (n=6), biopsies were taken 1 wk before the beginning of the program (week 0) and at weeks 1, 2, 4, and 8 of the progressive resistance training program. Desmin, dystrophin, and actin protein levels were determined with immunoblotting, and MHC isoform distribution was determined using SDS-PAGE at each time point for each group. In the training group, desmin was significantly increased compared with week 0 beginning at week 4 (182% of week 0; P<0.0001) and remained elevated through week 8 (172% of week 0; P<0.0001). Desmin did not change at any time point for the single-bout group. Actin and dystrophin protein contents were not changed in either group at any time point. The percentage of MHC type IIa increased and MHC type IIx decreased at week 8 in the training group with no changes occurring in the single-bout group. Strength was significantly increased by week 2 (knee extension) and week 4 (leg press), and it further increased at week 8 for both these exercises in the training group only. Muscle CSA was significantly increased at week 4 for type II fibers in the training group only (5,719+/-382 and 6,582+/-640 microm2, weeks 0 and 4, respectively; P<0.05). Finally, a significant negative correlation was observed between the desmin-to-actin ratio and the percentage of MHC IIx (R=-0.31; P<0.05, all time points from both groups). These data demonstrate a time course for muscular adaptation to resistance training in which desmin increases shortly after strength gains and in conjunction with hypertrophy, but before changes in MHC isoforms, whereas dystrophin remains unchanged.


Assuntos
Desmina/fisiologia , Distrofina/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Levantamento de Peso/fisiologia , Actinas/análise , Actinas/fisiologia , Adaptação Biológica/fisiologia , Adolescente , Adulto , Biópsia por Agulha , Desmina/análise , Distrofina/análise , Humanos , Masculino , Músculo Esquelético/química , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/fisiologia , Isoformas de Proteínas/análise , Isoformas de Proteínas/fisiologia , Fatores de Tempo
18.
Med Sci Sports Exerc ; 37(7): 1133-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16015129

RESUMO

PURPOSE: The present investigation examined single-fiber MHC alterations in response to high-intensity, short-duration, sprint cycle training. METHODS: Ten untrained college-age male subjects participated in 8 wk of a progressive sprint cycle training program. Training involved 15-s maximal sprints separated by 5 min of rest beginning with four sprints x 2 d in week 1 and increasing to six sprints x 3 d at week 8. Muscle samples from the vastus lateralis were obtained before and after training. A 30-s sprint cycle test was used to evaluate performance before and after training. RESULTS: For the 30-s sprint, mean power and total work increased from pre to post. Single-fiber analyses revealed a reduction in the MHC IIx isoform (2.0 +/- 1.0 to 0.2 +/- 0.1%, pre to post, P < 0.05) and an increase in MHC IIa (P = 0.08), whereas there was no change in hybrid fiber composition (total hybrids = 24%). Generally, MHC IIa content increased and MHC IIx decreased (P < 0.05) as demonstrated by homogenate analyses of tissue samples. CONCLUSIONS: We report that as little as 32 min of high-intensity sprint cycle training over 8 wk is sufficient to improve sprinting performance. This training response is accompanied by an increase in MHC IIa and reduction in MHC IIx content of the vastus lateralis. However, short-duration, high-intensity, sprint cycle training does not cause a reduction in hybrid muscle fiber content.


Assuntos
Ciclismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/genética , Polimorfismo Genético , Adulto , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Estados Unidos
19.
J Strength Cond Res ; 19(2): 332-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15903371

RESUMO

Excess postexercise oxygen consumption (EPOC) may describe the impact of previous exercise on energy metabolism. Ten males completed Resistance Only, Run Only, Resistance-Run, and Run-Resistance experimental conditions. Resistance exercise consisted of 7 lifts. Running consisted of 25 minutes of treadmill exercise. Vo(2) was determined during treadmill exercise and after each exercise treatment. Our findings indicated that treadmill exercise Vo(2) was significantly higher for Resistance-Run compared with Run-Resistance and Resistance Only at all time intervals. At 10 minutes postexercise, Vo(2) was greater for Resistance Only and Run-Resistance than for Resistance-Run. At 20 and 30 minutes, Vo(2) following Resistance Only was significantly greater than following Run Only. In conclusion, EPOC is greatest following Run-Resistance; however, treadmill exercise is more physiologically difficult following resistance exercise. Furthermore, the sequence of resistance and treadmill exercise influences EPOC, primarily because of the effects of resistance exercise rather than the exercise combination. We recommend performing aerobic exercise before resistance exercise when combining them into 1 exercise session.


Assuntos
Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Educação Física e Treinamento/métodos , Adulto , Exercício Físico/psicologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Corrida/fisiologia , Levantamento de Peso/fisiologia
20.
Muscle Nerve ; 31(1): 20-4, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15468102

RESUMO

To investigate the role desmin may play in muscular adaptation to exercise, we measured desmin protein content in the vastus lateralis muscle of seven untrained men in response to 8 weeks of high-intensity cycle training. Training involved 15-s sprints separated by rest for 5 min. Subjects began with four sprints twice per week, and progressed to six sprints three times per week. Peak power was measured before and after training with a 30-s maximal sprint test. Mean power during the first 15 s increased significantly after training (P < 0.05). Desmin and actin protein levels were determined by immunoblotting, from pretraining and posttraining muscle biopsies. Desmin protein levels were increased by 60% after training (P < 0.01), whereas actin protein levels did not change with training. We conclude that the cytoskeletal protein desmin increases in response to a high-tension, concentric-only load consequent to sprint training. Desmin appears to increase as the force generating capacity of the muscle increases. A reinforced desmin cytoskeleton may be necessary for increased force generation by the muscle.


Assuntos
Desmina/metabolismo , Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Ciclismo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...